NASA Finds Underground 'City' Hidden 100 Feet Below Icy Surface
In the vast, icy expanses of Greenland, a place more synonymous with desolate, arctic landscapes than with the shadows of human history, NASA scientists have stumbled upon an extraordinary anomaly. Buried beneath a hundred feet of ice lies a remnant of a bygone era, originally hidden from the world above and shrouded in Cold War secrecy.
What was initially just another radar scan over the frosty tundra turned into a discovery of an underground “city,” a relic of geopolitical strategies from a tension-filled past. This isn’t a tale of ancient civilizations, but rather a hidden chapter of recent history, now frozen in time, waiting to be uncovered. What secrets does this icy fortress hold?
The Discovery of Camp Century
In a groundbreaking exploration, NASA’s radar technology unveiled an extraordinary find beneath Greenland’s ice—a secret Cold War base known as Camp Century or “the city under the ice.” This discovery, made in April 2024 during a flight testing new radar equipment, revealed intricate underground structures that have not been seen so vividly until now.
While NASA scientists were testing the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) mounted on a Gulfstream III aircraft, they captured a surprising image. Alex Gardner, a cryospheric scientist at NASA’s Jet Propulsion Laboratory, noted, “We were looking for the bed of the ice and out pops Camp Century. We didn’t know what it was at first.” This advanced radar system is not your typical radar; it’s designed to give a more dimensional view of what lies beneath the ice by not only looking downward but also to the sides.
The UAVSAR technology has proven pivotal in this discovery. It allowed the team to see the underground city in unprecedented detail, mapping out the camp’s layout against historical blueprints and revealing structures that conventional radar had missed. This novel imaging technique represents a significant leap in ice-penetrating radar technology, offering new ways to understand the geological and environmental history of icy regions.
Photo from NASA Earth Observatory
The rediscovery of Camp Century is not just a historical curiosity but also provides crucial data for understanding ice sheet dynamics and the potential environmental impact of the materials left behind. As the climate changes, the ice sheets’ response is a vital area of study, with UAVSAR contributing to predictions about sea levels and ice stability.
History of Camp Century
Camp Century, famously known as the “City Under the Ice,” was initially presented to the public as a pioneering Arctic research station. However, its true purpose was far more clandestine. Established in 1959 by the United States Army Corps of Engineers, this secretive base was part of “Project Iceworm,” intended to test the feasibility of deploying nuclear missiles from beneath Greenland’s vast ice sheet directly against the Soviet Union.
On the surface, Camp Century featured accommodations and amenities that supported scientific research and the daily needs of its inhabitants, including laboratories, a library, and living quarters. This facade supported its cover story as a hub for polar research, where significant scientific firsts occurred, such as drilling the first ice cores to provide data on the Earth’s past climate.
Beneath its scientific guise, the camp’s primary objective was far more militaristic. The U.S. planned to create a network of tunnels capable of housing and launching “Iceman” ballistic missiles. These facilities were meant to be part of a broader strategy to ensure the U.S. could respond to Soviet actions during the Cold War. The project was ambitious, aiming to house up to 600 nuclear missiles under the guise of Arctic scientific endeavors.
The base was constructed deep within the ice, with tunnels extending over several miles. Despite the innovative approach to Cold War military strategy, the project faced insurmountable challenges. The ice’s dynamic nature caused structural instabilities within the tunnels, leading to frequent maintenance issues and eventual abandonment of the missile plan. The shifting ice also posed significant risks to the structural integrity of the facility, leading to its decommission in 1967.
In the decades following its closure, concerns have grown over the environmental impact of the waste left behind, including low-level radioactive waste from the camp’s nuclear reactor. Studies suggest that as the climate warms and the ice melts, these contaminants could be released into the environment, posing new risks to the ecosystem.
Technological and Engineering Features of Camp Century
The construction of Camp Century was a remarkable feat of engineering, designed to test the feasibility of establishing military facilities under the harsh conditions of the Greenland Ice Cap. This project was not only ambitious but also showcased a range of innovative construction techniques that have informed cold region engineering practices to this day.
Camp Century was constructed using a “cut-and-cover” method where trenches were dug into the ice and then covered with arched steel structures. This method was crucial in creating the protective tunnels that formed the main structure of the base. The entire facility was then insulated to protect against the extreme cold and to ensure that the heat generated within the base did not cause the surrounding ice to melt.
To support its designation as a self-sustaining underground city, Camp Century included living quarters, a kitchen, a hospital, and even a movie theater, all powered by a groundbreaking portable nuclear reactor, the PM-2A. This reactor was a critical component of the base, providing a reliable power source in an environment where traditional fuel supplies would be logistically challenging to maintain.
The base’s design and construction required innovative solutions to numerous challenges, such as the structural integrity of buildings under ice and the management of thermal effects caused by the heat generated within the base. These innovations have left a lasting impact on polar construction techniques and have been studied for their potential applications in other remote and harsh environments.
Moreover, the data and experience gained from the construction and operation of Camp Century have been invaluable in the development of future designs for ice-cap camps. This project demonstrated that subsurface ice-cap camps are both feasible and practical, and that nuclear power can significantly reduce the logistical burdens of supporting isolated, remote military facilities.
Secrets Uncovered
The unveiling of Camp Century’s true purpose marked a significant chapter in Cold War history. For years, the world believed that Camp Century was solely a scientific research station focusing on Arctic studies and ice core sampling. In reality, it was a cover for a highly classified military operation known as Project Iceworm.
Initially portrayed as a peaceful research facility, Camp Century was publicly celebrated as a model of polar innovation and technological achievement. The facility was featured in documentaries and news articles, praising its advanced infrastructure and the potential scientific advancements it could bring.
The truth about Camp Century came to light in 1997 when the Danish Parliament published documents revealing that the base was intended to serve as an underground launch site for nuclear missiles targeted at the Soviet Union. This disclosure came as a shock to the international community, especially since Denmark had been assured that the operations at Camp Century were purely scientific.
This revelation not only strained U.S.-Danish relations but also raised significant ethical and legal questions about the sovereignty and territorial integrity of Greenland. The Danish government expressed deep concerns, as they had not consented to the militarization of their territory, which they were led to believe was being used for benign scientific purposes.
The declassification of Project Iceworm’s objectives prompted a broader discussion about the environmental impact of the military base, particularly concerning the nuclear reactor used to power the camp. Concerns were raised about the potential release of radioactive materials stored under the ice, which could emerge due to the accelerating ice melt caused by global warming.
Camp Century’s Effect on the Environment
The thawing of Greenland’s ice sheet is poised to reveal the remnants of Camp Century, including hazardous materials such as low-level radioactive waste and polychlorinated biphenyls (PCBs), which are known carcinogens. This potential exposure is a significant environmental threat, as the melting ice could release these contaminants into the surrounding ecosystem and beyond.
As the ice melts, estimated projections suggest that by as early as 2090, the base could become exposed, unveiling not only the physical structure but also the environmental hazards contained within. This includes an estimated 9,200 tons of physical materials, 53,000 gallons of diesel fuel, and other toxic wastes such as PCBs, which have long-term persistence in the environment and can bioaccumulate in wildlife and humans.
The exposure of these contaminants poses not only environmental risks but also political and diplomatic challenges. The cleanup and management of this waste will require coordinated international efforts, potentially straining relationships between the United States, Denmark, and Greenland. The situation underscores the broader impacts of climate change, where thawing ice is not just a physical change but a catalyst for emerging political conflicts over accountability and environmental stewardship.
Echoes from the Ice: Reflecting on Camp Century’s Legacy
The rediscovery and impending exposure of Camp Century not only unearths a relic of the Cold War but also reminds us of the lasting environmental impacts of human endeavors. This hidden base, once a symbol of military ingenuity, now poses significant environmental risks as the consequences of its hazardous wastes are set to re-emerge due to the warming climate. The challenges ahead are not only technical or environmental but also deeply political, involving negotiations and responsibilities that span across nations and generations.